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Abstract. The semiclassical density of states depends, according to the periodic-orbit sum 
formula, on the linear stability of the orbits. This means, however, that contributions from 
the marginally stable or 'resonant' orbits, which necessarily accompany stable ones, diverge 
unphysically. The remedy for a system of two degrees of freedom is found to lie in the 
classical non-linear normal forms for periodic orbits, which describe how satellite periodic 
orbits coalesce with the central one as resonance is approached ( E  + 0). Through these 
forms the resonant contributions are expressed as diffraction integrals (the first few being 
'diffraction catastrophes') uniformly valid in E and h, and finite even for E + O  provided 
h # 0. An extension is proposed to incorporate, jointly, multiple resonances found in 
repetitions of orbits. 

1. Introduction 

Periodic orbits are trajectories which close and retrace themselves. For a typical 
Hamiltonian system with more than one degree of freedom (not an integrable one) 
such orbits are isolated: neighbouring orbits are not periodic. They may be stable or 
unstable depending on whether the neighbours stay close or escape away, and the 
stability is quantified in terms of the eigenvalues of a stability matrix M describing the 
linearisation about the periodic orbit in a Poincare' section map (see e.g. Henon 1983). 
The matrix M has unit determinant, so that for a system with two degrees of freedom 
its eigenvalues are exp(*ia) for a stable orbit. This is the case we shall consider. 

Simple (Jirst-order) resonance occurs at a: =0 ,  so that both the eigenvalues are 
unity. Then M represents a simple shear mapping in the phase plane (it has one 
degenerate real eigenvector, representing a continuous line of fixed points through the 
origin in the linear approximation). Higher orders of resonance occur at all rational 
angles a: = 2 m / m  ( n ,  m coprime) because, although M itself is not then resonant, its 
mth power M", corresponding to the mth repetition of the periodic orbit, is resonant. 
For m 2 3 the resonant matrix M" is the identity (every point in the q, p plane is then 
fixed under M") so that M itself represents (a  linear distortion of) a rotation by 27rn/ m 
in the q, p plane. For a second-order resonance, m = 2, however, the eigenvalues are 
still real (both -11, so that there is still a degenerate real eigenvector and M represents 
a simple shear with inversion. 

The semiclassical theory of Gutzwiller (19711, in which the quantum density of states 
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is given as a sum over the isolated periodic orbits of energy E and their repetitions, 
breaks down for resonant stable orbits. This is because the amplitude of an orbit in 
the sum is determined by the linearisation around it, which at resonance predicts a 
continuum of periodic orbits. The amplitude of a resonant orbit diverges. The remedy 
is to rederive the semiclassical approximation keeping the non-linear part of the 
PoincarC map which is not required off resonance. The effect is to replace the continuum 
by a coalescence of a finite set of ‘satellite’ periodic orbits onto the central one. The 
resulting amplitude is non-singular. In 9 2 we rederive the periodic orbit sum and in 
0 3 describe the normal forms for each order of resonance. In 0 4 we analyse the 
contributions of the resonances. It turns out that the contribution exactly at resonance 
can be identified where applicable with that obtained by Richens (1982) for an integrable 
system. The problem of large iterations, for which there may be several simultaneous 
near resonances, is dealt with in 9 5 .  

2. The periodic-orbit sum 

In this section the periodic-orbit sum formula is derived in full, avoiding the approxima- 
tion for the amplitudes which breaks down for resonant orbits. The conclusion of the 
section is that the usual formula for these (16) is replaced by the integral (18). 

Given the time-dependent Green function 

in terms of the eigenvalues Ek and eigenfunctions +k of the Hamiltonian, we obtain 
the density of states as 

The semiclassical expression for the Green function (see e.g. Berry and Mount 1972) 
is 

K ( q ,  q’, t )  = (277if1-I det exp(ih-’uJ(q, q’ ,  t )  -ipJp/2) , I lii2 
where 

r l  

(4) 

is the classical action along the j th  classical trajectory that takes the time t to reach 
q’ from q. If the action is a minimum along the trajectory, then pj = 0. This is the 
case for Hamiltonians of the form H = p 2 / 2 m  + V(q ,  t )  for sufficiently short time 
intervals. For longer intervals there may be isolated focal points along the orbit, where 
one or more of the eigenvalues of a2uj/aq d q ‘  are infinite; p j  is then the total number 
of such points along the orbit. 

The singularities of the Green function at the focal points can be avoided by 
Maslov’s method (Berry 1983). In this we consider the coordinate-momentum Green 
function 

K ’ ( q , p ’ ,  t )  = (277ih)-’ exp(ih-’o,(q, p ‘ ,  t )  -ipi77/2) 
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where aj(q, p', t )  is the Legendre transform of the classical action along the j th  path. 
Where the determinants of both (4) and (6) are non-singular we obtain one from the 
other by taking the Fourier transform by the method of stationary phase. Near a focal 
point, where the determinant of (4) is singular but (6) is not, the correct semiclassical 
approximation for K ( q ,  q ' ,  t )  is the Fourier transform of (6) with no stationary phase 
approximation. 

The time integral of (4) in (3 )  will pick out the classical trajectories of energy E, since 

a aj - (4 ,  q',  t )  = -H,. 
a t  

( 7 )  

Generally for any given q, there will be discrete initial momenta pj(q, E )  in which the 
classical trajectory returns to q after some time, and the momentum on the return 
passage will be quite different from pj(q). However, the relations 

au/aq'= -p' aula9 = p (8) 

imply that the phase of the dq integral in (3) is stationary only if the return momentum 
equals the initial one. Thus semiclassically the density of states reduces to a sum over 
the periodic orbits of the system and a zero time contribution (Berry 1983) 

ii ( E ) = ( 2 v h  ) -2  dq dp 6 ( E - H ( 4, p ) ) . (9) I 
The contribution of a periodic orbit of period T and its repetitions m7, where m is 

a a positive or negative integer, are evaluated in the appendix. The contribution for 
the mth repetition is 

( 2 ~ i h ) - ~ / ~ ~ A ,  exp(ih-'m2vJ - p,v/2) (10) 

where A ,  is the orbit amplitude 

and 

2 v J =  p -dq  I 
once around the periodic orbit and S ,  (Q, Q') is the generating function for the mth 
iteration of the PoincarC map in the neighbourhood of the periodic orbit. 

The origin is a fixed point of the PoincarC map. The linear part of the map around 
the origin is given by 

We can relate the quadratic part of the generating function S ,  to M"' by 

so that, if we evaluate (1 1) by stationary phase, the orbit contribution becomes 
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This reduces to the familiar formula 

where the phases are accounted for by the sign of the denominator. 
As we saw in 0 1, det(M“ - 1) = 0 for a resonance, so that the Gutzwiller formula 

(15) for the mth contribution of the resonant orbit diverges. It is then necessary in 
(1 1) to integrate keeping the necessary non-quadratic terms of S,( Q, Q ) .  A further 
problem is that the exact non-linear map is close to the identity, which cannot be 
generated by the action S,(Q, 0 ’ ) .  We avoid it by starting from the coordinate- 
momentum Green function (6) instead of (4) and so obtain the amplitude in the form 

where S,(P, Q )  is the Legendre transform of S,(Q, Q ) .  It will also prove convenient 
to use polar canonical coordinates ( I ,  4 )  instead of Cartesian coordinates P, Q. The 
amplitude then takes the form 

3. Normal forms for the resonant Poincare maps 

The phase function S(  P, 0’) - PQ’ has the beautiful property that it is stationary at 
each fixed point of the PoincarC map: d S / d P  = aS/aQ’ = O a  Q‘ = Q, P’= P. These 
correspond to stable periodic orbits in the case of extrema of the phase function and  
to ordinary unstable orbits for saddle points. (Unstable orbits with reflection, though, 
are extrema.) In particular the phase function is an extremum at the origin. 

Off resonance the behaviour of the phase function near the origin is simply quadratic, 
but on resonance it is a flatter function of higher order. The task is to enumerate the 
generic local forms that it takes and perform the integrals to obtain the amplitudes. 
Only the local forms are required because we consider the semiclassical limit h + 0. 
The goal is a formula for the amplitude which is uniformly valid as h + 0 and e + 0 
where E measures deviation from resonance. The quadratic part of the function governs 
the linearisation and the generic way in which this breaks down, for a simple first-order 
resonance, is for the quadratic form to become degenerate, i.e. flat in one direction, 
with a consequent continuum of stationary points along it. This continuum is broken 
by the cubic variation of the generating function. Slightly off resonace the resulting 
function has an extremum at the origin and a saddle point nearby and as resonance 
is approached ( E  + 0) these coalesce (fold catastrophe) and annihilate to leave no 
periodic orbit at all. (This obliteration is not shared by higher-order resonance, below, 
where the central orbit always survives.) 

Second and higher orders of resonance are not subject to the direct genericity 
argument, which yielded the simple coalescence above, because of the restriction that 
for mth order the mapping has an  mth root (the ordinary one-traversal Poincark map).  
Each order has just one (restrictedly generic) way in which it becomes degenerate, 
except fourth order which has a choice of two ways. They were classified by Meyer 
(1970) and are discussed by Arnold (1978, appendix 7). The contours and normal 
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Table 1. The mechanism of loss of stability of a periodic orbit with repetition number m, 
as described by its Poincare map M and the corresponding normal form of its generating 
action. 

Linearised Linearised Fixed points of Fixed points of 
Repetition map M at map M” at true M” off true M“ off Normal 
number m resonance resonance resonance, E > 0 resonance, E < 0 form 

2 

2 -.  * L * .  

’ \  .c c ‘._ - ’  

c c- 

3 

5 

> 5  Natural extension of m = 5 case 

0 

1 

E I  + C I ’ + ~ I ’  
x sin(46)  

0 

1 

forms are indicated in table 1 both for E > 0 and E < 0. In all cases there is, as E + 0 
from above, a coalescence of m satellite saddle points. For m =4, i c l < l a l ,  and for 
m > 4 ,  these are interspersed with m satellite extrema as well. When the satellite 
extrema are present, they annihilate the saddles at E = 0, leaving only the central stable 
orbit for E < O .  For m = 3 and for m =4 ,  ( C I  > la 1, the saddles simply pass straight 
through the origin as E goes through zero. For m = 2 it is different again, the two 
saddles annihilate, but also convert the central extremum to a saddle point. 

An important point about the relationship between the generating function picture 
and its consequent map picture is that the m satellite saddles correspond to a single 
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unstable satellite periodic orbit which winds n times round the central one in m 
traversals. Likewise the satellite extrema are a single stable satellite orbit. Thus none 
of the diagrams in the table contains more than three periodic orbits and the actual 
number present, changing as E goes through zero, is shown in the upper right corner 
of each diagram. 

It is important to gain some further understanding of the origin of the normal 
forms for m > 3 .  As stated earlier, in the linear approximation at resonance ( E  = 0) 
all orbits are periodic and can be labelled by their polar Poincari section coordinates 
( I ,  4). The function 

( 1 9 )  mTH(I, 4’) = I 4 ’ - S ( I ,  4’) 
has, at resonance, an interpretation: by standard perturbation theory it is the integral 
of a reduced Hamiltonian function (Arnold 1978, appendix 7) in phase space around 
that periodic orbit of the linearised system, which starts from and ends at ( I ,  4‘). Off 
resonance ( E  # 0) the linear part of the Poincari map is no longer quite the identity, 
but a ‘rotation’ through a small angle E which is generated by adding the term EI to 
S ( I ,  4’). For small E ( 1 9 )  still holds so that the phase function of the integrand of 
(18) is just the normal form of the averaged Hamiltonian H ( I ,  4)  (Arnold 1978):  

For E # 0 we can neglect the 4-dependent term close to the origin, which is therefore 
surrounded by invariant constant-I circles, corresponding to thin tori in the full 
four-dimensional phase space. This is the Birkhof approximation or normal form. If 
E is small and & c 2 < 0  there will be a torus with action 

f =  - & / 2 c 2 + 0 ( E 2 )  ( 2 1 )  

made up entirely of closed orbits. The basic effect of the 4-dependent term is to break 
this quasitorus, leaving only the isolated closed orbits already described. It may be 
noted that within the Birkhoff approximation the relation ( 1 9 )  between the Hamiltonian 
and the generating function for the Poincari map is exact. 

4. Resonant orbit amplitudes 

It remains merely to insert the quoted normal forms into the exponent of ( 1 7 )  or (18). 
For m = 1 , 2 , 3  the integral ( 1 7 )  yields standard diffraction catastrophe integrals (Berry 
and Upstill 1980), corresponding respectively to the fold, the cusp and the elliptic 
umbilic catastrophes (Poston and Stewart 1978). For m = 4  the diffraction catastrophe 
integral is that of X , ,  the first of the catastrophes involving a continuous variable 
parameter, the ‘modulus’ K .  If the catastrophe potential function is written x4+ y 4 +  
Kx’y’ then the two different cases in table 1 correspond to K > -2 and K < -2. For 
the higher resonances we insert ( 1 9 )  and (20) into ( 1 8 )  to obtain 

= (-27ri/ h )  I ”  d I  Jo( h - l a l  “‘I2) exp[i h - l (  EI + C c y Z  ”) I  ( 2 2 )  
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where J o ( x )  is a Bessel function. Finally we scale the large parameter h-' out of the 
Bessel function, so that with the change of variables 

I (23) = h-21" 

the amplitude reduces to 

A,,, = ( - 2 ~ i h - ' + ~ / ~ ) ' / ~  lom duJO(au"'/') 

x exp{ i~ - '+~ / " [cu~+  E ~ - ~ / ' " U  + 0 ( h 2 / " ) ] )  

where c = c2 in (22) and we neglect higher terms in I. 
If m > 4 the integrand has the form of a complex Gaussian with large frequency, 

modulated by a slowly varying function. The uniform asymptotic approximation for 
integrals of this form (Berry and Tabor 1976) leads to 

A,,, = (47r I C I  i ) - 1 / 2 J o ( a h - 1 f m / 2 )  exp(-ih-'cf2) 
-(I CI  h -'/2"'2T 

exp(i/3x2/2) dx I_, 
+ ~ - ' ( i f i / 2 ~ ) ' / ~ [ 1  - ~ ~ ( a f i - ' f " / ~ ) ]  (25) 

where /3 = sgn(c) and f is given by (21) even when negative. 
The amplitude takes on different forms in three different parameter regions. 
(i)  Far enough from resonance for I af" /2h- '  I >> 1, the amplitude reduces to 

A,,, = - i ( 4 ~ c h - ' a f ~ / ~ ) - ' / ~ 0 (  7) 
x exp(-ih-'c12) cos(ah-'fm/2 - n/4)  + ~ - ' ( i h / 2 T ) ' / ~  (26) 

where @(XI is the unit step function. So for I < 0, (26) combined with (10) yields the 
Gutzwiller periodic orbit contribution (16), since 

E = ma - 2 n ~ .  

For f >  0 we also have the contributions 
(27) 

Here the top ( 4 )  contribution corresponds to the stable satellite orbit if ca > 0. The 
stability angle for this orbit is proportional to &'"I4, in agreement with the classical 
result (Arnold 1978). 

(ii) For large m there may be a region for which laI"/2h-')cc 1, while 

(29) 
h-Icf2- * - I  2 - E /2c>>1 

and the amplitude is then 

A,,, = - i ( 2 ~ ) - ' ' ~ 0 ( f )  exp(-ih-'cf2/2)+ ~ - ' ( i h / 2 ~ ) ' ' ~ .  (30) 

The central orbit still gives a non-resonant contribution (arising from the endpoint of 
the integral in (25)). But the satellites now yield a combined contribution, identical 
to that of the closed-orbit torus of the Birkhoff approximation. This family of closed 
orbits contributes with a higher power of h-' than an isolated periodic orbit. In the 
Birkhoff approximation the Hamiltonian is integrable; this is the case treated by Berry 
and Tabor (1976, 1977a, b) who showed that the amplitude of a torus contribution is 
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proportional to ldet a2H/d121. This determinant is diagonal in the Birkoff approxima- 
tion and  one of its elements is just 2c. 

(iii) As the resonance is approached we have 1 h - ’ c f 2 / 2 1 < <  1, so that (25) reduces 
to 

A,,, - - i ( s c ) - ” * + ( h s ~ ) - ’ ” I  (31) 

which can be identified with the resonant periodic orbit contribution obtained by 
Richens (1982) for an  integrable system. 

The three cases above can be summarised pictorially (figure 1) in terms of the 
‘Mexican hat’ shape of the generating function for m > 4 and i> 0. For case (i) both 
the area of the hat centre and the area of the ripples in the rim are large compared to 
h. For case (ii) the area of the hat is large but the ripple area is not, and finally for 
case (iii) neither the hat area nor the ripple area are large. 

Figure 1. The generating action for the higher repetition numbers has the form of a ‘Mexican 
hat’ with ripples in the rim. 

5. Many repetitions 

Near resonances occur in the periodic-orbit sum in two ways. Resonances will appear 
as energy is varied along a one-parameter family of periodic orbits if we fix the repetition 
number m. Conversely, as m grows there will be near resonances, even though the 
energy and  threfore the stability angle remain fixed. The resonance parameter given 
by (27)  will be small for all m such that n / m  is a good rational approximation of a. 

So far we have restricted the analysis to the limit of small E.  But it can be argued 
as follows that the analysis is valid for sufficiently large E to cope simultaneously with 
several near resonances. Recalling that according to (20), the constant c is proportional 
to m, we see that a near resonance arising from the violation of condition (29) happens 
even for finite E as m + CC. In fact for sufficiently large m there will be more than one 
near-resonant quasitorus. The situation becomes clearer when analysed in terms of 
the coefficients of the resonant Hamiltonian (20), 

e ’ = E / m r  c ’  = c /  mr (32) 

so that E ’  is the difference between the frequency of rotation of the orbits surrounding 
the central orbit and a given rational frequency, in the linearised approximation. The 
quasitorus is given by i= - E ‘ / ~ c ’  with c’ fixed. The condition for non-resonance then 
becomes 

(33) 1 mrH(  i) I >> h. 
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Thus, for increasing m a given quasitorus will eventually contribute separately from 
the central orbit. However, for large m there will be more than one integer n such 
that the tori with frequencies 27m/ m7 violate (29). 

For a single near resonance the orbit contribution is correctly given by (18). 
However, the general form for angle variables, easily derived from the corresponding 
Green function (Berry and  Tabor 1977a, b) is 

Inserting (20) and (19) in (34), with E taken as the smallest value given by (27), we get 
stationary phases for many integrals. If m is not large, there will be at most one (with 
n = 0) for which the stationary points away from the origin cannot be treated as separate 
Gutzwiller orbits. For large m the converse is true: the contribution of the mth 
repetition of the periodic orbit will be simply the sum of several near-resonant contribu- 
tions. 

6. Conclusion 

The semiclassical equivalence of the density of states with a sum of periodic orbits, 
derived by Gutzwiller more than a decade ago, remains the only general method 
available for the study of the spectrum of classically unintegrable systems. The small 
denominator problem for stable periodic orbits near resonance, marring the original 
formula, is correctly ascribed to an  avoidable linearisation. Off resonance, no matter 
how close, the original formula is valid in the limit h + 0, but, since the distance E 

from resonance is a continuous function of energy, there will be energies where the 
joint limit h -+ 0, E - $ O  must be used, yielding amplitudes given by the normal forms 
of table 1. 

If E is taken to zero sufficiently faster than h then for m > 4 (and one of the two 
m = 4 cases) the satellite periodic orbits collapsing onto the central one contribute 
together as a quasitorus described by the first non-linear term in the Birkhoff approxima- 
tion. Depending on E and fi, it may or may not be possible to separate the amplitude 
of the quasitorus from that of the central orbit. If it can be separated, then it can be 
identified with that of a torus in the Berry-Tabor theory for integrable systems. It may 
thus be said that quantum mechanics has a smoothing effect on classical mechanics. 

If the number of repetitions of the central orbit is sufficiently large, there will be 
many quasitori nearly resonant with it. The total amplitude for a given repetition is 
simply the sum of the amplitude of each near resonance. A given nearly resonant 
quasitorus for a repetition m will eventually contribute separately for some multiple 
repetition jm. However, by this time it will have been replaced by quasitori in its 
interior whose frequencies are better approximations of the frequency of the linearised 
system. 
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Appendix 

The evaluaton of the contribution of an individual periodic orbit to the density of 
states is simplified by a careful choice of coordinates, as follows. Generally periodic 
orbits cone in one-parameter (energy) families. We take P, Q as transverse canonical 
coordinates, P =  Q = 0 being the orbit family itself, such that for P and Q and H 
constant we get closed curves. Their actions will be denoted by J and the angle 
coordinate along them by 8. This is specified by 

(‘41) 

and aH/aQ = -P, which 
must be non-zero; otherwise the P and Q constant coordinate lines would be the 
neighbouring orbits, which are not generally closed. We can, however, choose the 
coordinate lines to be tangent to the orbits at 8 = O .  The return map (P, Q ) ( O ) +  
(P, Q)(27)  is then the Poincark map. 

a 
aJ  

8, = w o ( J )  =- H(J, 0,O). 

The Hamiltonian varies with P and Q, since aH/aP = 

In the integral 

- i ( 2 ~ h ) - ~  5 d Q  d 8  d t  I det 2?!k I I ”  exp[ih-’(u+Et  - i p ~ / 2 ) ]  (A2) 
a4 a d  

the determinant is slowly varying. U is a function of 8, e’, Q, Q’ and t with 

aulae = J au/ae’= -J’. (A3) 

W o ( ~ )  = ( e ’ -  e) / t  (A41 

However, along the periodic orbit 

so the off-diagonal tori of the determinant are zero and 

( a;:) - 1 aJ a2u 
det -- t aw, a Q  aQ’ 

By the method of stationary phase 

dr exp[ih-’(a+Et)] = ( - 2bh - f;) ’’* exp[ih-’(J( 8‘- 8) + S ( Q ,  Q’))] J 
using (7) and 

However, 

d 2 u  aEaJ  a J  8 ’ - 8  ( 2 ~ ) ’  d J  - WO - - - _-  
a t 2  - -2 at-  awo t 2  m r 3  awo 

as 8 - e‘= m 2 7  and t = mr. So (A2) becomes 

a’s,,, I i 2  
[ ( 2 ~ > ~ ( i h ) ~ ] - ” ~ r  1 d Q  d 8  1 -1 

aQ aQ’ 
x exp[ i h - I (  m2 TJ + S,,, ( 0, 0) - ip , , ,~ /2] .  
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The integrand is independent of 8, so the contribution of the mth repetition of a 
periodic orbit to the density of states is given by (10) and (11). 
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